

A Proposed Collaborative Approach for Pattern
Matching and Replacement Policies for the design

of Peephole Optimizer
Chirag H. Bhatt#, Dr. Harshad B. Bhadka*

#Assistant Professor, Dept. of MCA, Atmiya Institute of Technology & Science, Rajkot, India,

Ph.D. Scholar, School of Computer Science, RK University, Rajkot, India
*Professor and Director – MCA, C. U. Shah University, Surendranagar, India

Abstract— In the perspective of peephole optimization, this
paper describes a framework that approaches a collaborative
fashion for the pattern matching and replacement strategies
on the basis of formal exploration of the pattern matching
strategies that have been implemented. In the first section, the
framework of this paper is set up: Peephole optimization is
observed from an information-processing viewpoint; the
distinct components that are involved in this process are
presented and formally defined. Then in the next sections the
strategically modules are illustrated, which are the different
pattern matching, rule application and replacement policies
that have been evaluated in this work.

Keywords— Peephole Optimizer, Pattern Matching Strategies,
Collaborative Fashion, Replacement Policies.

I. INTRODUCTION

This paper is about three issues: pattern matching,
Replacement policies for optimization rules application and
peephole optimization. What is pattern matching? The
pattern matching problem (in this instance within peephole
optimization), can be observed as an information processing
problem if generalized. Figure 1.2 shows the modules that
are involved in this process. What exactly take place in this
technique; what kind of information is processed? The input
to this system is some assembly code to be optimized this is
the entering information. Within the system, the peephole
optimizer uses its information base – the optimization rules,
to replace portions of the code. The dealings between the
assembly code and the rules are where the soul of the task is,
where information processing happens. If the match is
successful, the code is replaced, otherwise it remains
unchanged. The assembly code is returned as the output
of the system, once the application of rules is accomplished.
This is basically what happens in a peephole
optimizer [1], [2].

II. PREVIOUS WORK

A. Flow of the Peephole Optimizer

In the phases of compilation the Peephole Optimizer
performs the task of improving the suboptimal input ASM
code as per the flow shown in the figure II.1. As per the
flow the suboptimal assembly (ASM) code is given as input
to the Peephole Optimizer along with the set of
optimization rules. This describes the conditions which may
occur in the ASM code and based on the matching the
suboptimal portion of the code would be replaced with the

optimal one in the set. In the next part the peephole
optimizer provides the interface and interaction between the
input ASM code and the Pattern Matching and Replacement
policies based on which the optimization can take place
along with the operation of Parsing. And in the next step the
Approach which includes the specific mechanism to deal
with the optimization rules and the ASM code where
algorithm or strategy can be applied to obtain results in the
form of equivalent and optimized ASM code as output [2],
[3].

Fig. 1: Flow of the Peephole Optimizer [3]

B. Design of Peephole Optimizer

The Design of Peephole Optimizer in figure 2 displays a
collaborative approach for the peephole optimizer. Based
on the flow of peephole optimizer described above, the
framework also takes suboptimal code as input along with
optimization rules set. And within the peephole optimizer it
consists of two major tasks called pattern matching
technique and Replacement Policies. In this work the first
task is related with the decision making of how to match a
single rule, on the basis of more than one pattern matching
mechanism available or suitable for specific snippet of
ASM code and hence the combination of multiple pattern
matching can overcome the limitations of the
implementation of single pattern matching algorithm. And
the other major task called Replacement Policies decides
how to apply several rules based on multiple rule
application approaches and it replaces the optimal code
with unoptimal code in the input ASM code if the
successful matches found, otherwise it would be remain as
it is.

Chirag H. Bhatt et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 138-141

www.ijcsit.com 138

Fig. 2: Peephole optimisation as an information processing

problem [11]

B.A.1 Pattern Matching Technique

1) Declarative Pattern Matching: In logical and functional
programming languages like PROLOG, LISP, Haskell etc.
pattern matching is a very leading programming feature.
These languages provide functionalities driven through
conditions, variables, data structures and relations between
them in a descriptive style. The machine performs the
computation based on the specifications are given in a
declarative way. The interpreter observes the responsibility
to manage this task in such programming languages. This
generates result not only in less code, fewer algorithms, and
in stress-free maintenance, but also in more compact picture
of the logic of the program [4].

For this paradigm, the procedural and structured
programming are playing corresponding role since in those
languages the methods/procedures are used to represent the
outcome obtained by steps that shall be carefully taken.
Accordingly, in Java the lengthy code is written, both
programming styles can be accepted. The objects are
controlled by means of methods even though the procedural
aspect is more common. Particularly the specification of the
rules is expressed in a declarative style as in [4], using
back-references and groups.

2) Generic Pattern Matching: A more intangible form of
pattern matching that is conducted on an object level
denoted by Generic Pattern Matching [5]. The declarative
approach controls the pattern matching on the basis of the
presentation of the optimization rules whereas The control
of the generic pattern matching approach does not lie in the
format of the optimization rules, but in the generic way of
treating the patterns: The difference is represented with
matching the objects themselves as abstract data types and
the information it contains in a form of primitive types.
These are mostly simple strings. Since the object contains
and encapsulates the primitive one, with a conceptual
significance to it, this allows more ‘intelligent’ matching:
First the type is evaluated; only if it is capable, then the
primitive information – the ‘contents’ – are matched.
Hereafter, this higher level of abstraction permits an
assembly code line to be further divided into ordinary
instructions and label definitions; the previous ones further

containing of the opcode part and the arguments, whereas
the concluding ones typically hold label numbers. For
optimization rules that involve look ahead, particularly this
type of information is useful. In its place of using one more
line of input for every matching attempt, the generic
strategy uses stored information about assembly instruction
and their elements on demand with just a few array accesses
for quick retrieval. This approach is complex and expects a
more operational implementation style, which is also
lengthier in sense of the programming efforts.

The extended generic strategy goes one step further by
probing for some overlapping optimization opportunities
that might else disqualify each other. It then selects the best
promising order of optimizations. Investigating with
cooperating rules here becomes a very interesting issue.

B.A.2 Replacement Policies

1) Declarative Pattern Matching: The backwards strategy
has been introduced in connection with Lamb’s work [6]. It
is described as a rule presentation strategy for both the
declarative and generic pattern matching in its operation. As
the below given figure 3 illustrates the cursor is set to top of
the code line-1 where rules are being tested in forwards
fashion. The Optimization rules are tested with the input in
backwards fashion. The peephole window size of the
optimizer is as big as the matching part of the current rule
needs. Therefore, its corresponding part must fit into the
presently reachable part of the assembly code input, which
is defined by cursor in order for a rule to be ‘testable’. This
results in smaller rules being preferred over lengthier ones
because they are chosen for testing ahead of time.

Fig. 3: Backward Strategy [6].

For a rule with a matching part of 4 lines, end-Match

indicates the last line of the rule to be matched – cursor the
first line which does not affect the backward strategy. If the
replacement consists of 2 lines, the 4 lines are replaced and
the cursor is set to the first line of the replacement. This
method is required to detect all optimization opportunities
further up the code that the replacement might have
presented. Rescanning the assembly input becomes
redundant with this approach. For the sake of ensuring that
no optimization opportunities are skipped, the index to the
rules file is set back and the complete set of rules is tested
again upon a successful match-replacement operation. A
key dissimilarity between the two forms presented is the
introduction of look-ahead. An optimization rule can cover
parts that match a random number of assembly code lines.
Such lines are compared and only copied to the replacement
without change [6].

2) Cascading of Rules: As per the above discussion, the
advantage of the backwards strategy deceits in the fact that
the new optimization opportunities are found promptly due
to the assembly code input desires to be scanned once only.
However, There is a vital weakness in this strategy: Due to

Chirag H. Bhatt et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 138-141

www.ijcsit.com 139

the nature of the method smaller rules are favoured over
longer ones. This is not always anticipated because the
smaller rules mostly eliminate the longer ones that might be
improving more or better. More indeed, the relationship
between rules can be specified as follows:

Choice point: Given a pattern matching problem, a
choice point defines a state in the assembly input C where
at least two rules oi and oj ϵ O are applicable to the input
sequence c1. . . cn ϵ C [11].

Interaction of Rules: Given a choice point as defined, if a
matching rule oi either eliminates another matching rule oj,
or causes to succeed a rule oj that did not match before, the
rules oi and oj are described to interact. This relation is also
valid for sets of rules Ok = {o1. . . on} and Ol = {o1. . .
om}[11].

According to the purpose one desires the optimization
approach to implement, editing the rules file is a
conceivable but clumsy solution to stop or enable the
collaboration of rules. A far better option is to use an
optimization approach that pursuits for alternative
optimization orders to apply the most hopeful one. The
purpose here is not to discover the best optimization
sequence/s, which according to [7] is NP complete. For that
cause the rule cascading strategy that has been adopted here
as an addition to the generic strategy, acquires the
advantages of the backwards strategy, observing a few rules
ahead to apply the best available optimization sequence.
The user can have investigation with the results by
operating the limit of the look-ahead. For the avoidance of
the scanning the complete assembly input, the maximum
number of assembly lines examined after each match is also
limited within a single optimization sequence. The standard
for choosing the best available optimization sequence is
optimization for space, i.e. the order of rules that rejects
most of the code is selected. For this determination, mock
choice points are formed, which define the start and end
points of substitute optimization sequences. The results are
maintained in so-called options [9], [10]:

Option: An Option keeps the state of a pattern matching
problem between two choice points. Hence it holds the
most recent information about the set of rules that have
been applied, the state of the input, the labels table, and the
cursor pointing to the input. Moreover, it also tracks the
total sum of eliminated lines [11].

B.A.3 String-Based Matching And Replacement

The difficulty of string based pattern matching is related
with finding a string substitution for a string pattern so that
another string and the substitution pattern become equal [8].
Given a string wordn, the following typical ‘patterns’ can
occur in a string matching problem within the context of
peephole optimization: 1݊ݎ݁ݐݐܽ ∶= 2݊ݎ݁ݐݐܽ	1݀ݎݓ	 ∶= 3݊ݎ݁ݐݐܽ	1݈ܾ݁ܽ݅ݎܽݒ	 ∶= 4݊ݎ݁ݐݐܽ	1݈ܾ݁ܽ݅ݎܽݒ	1݀ݎݓ	 ∶= .2݈ܾ݁ܽ݅ݎܽݒ	2݀ݎݓ	1݈ܾ݁ܽ݅ݎܽݒ	1݀ݎݓ	 .. 	

Consequently, in demand to match a wordn with one of
the patterns above, it has to be split in such a way as to ‘fit’
into the pattern. Since the first two cases can be matched to
the whole term immediately are simple and resulting in a

successful or failed match. Though the Patterns 3 and 4
require the subsequent pattern character to be originate in
the term (known as search string) whenever a variable is
met in the pattern. One has to look ahead in both the word
and the pattern in instruction to determine the length of the
string to be matched with the variable.

B.A.4 Limitations of the Work

• The results are not representative due to the rules set
provided by rules.txt with the use of compiler
generated assembly files for input.

• Rules are only strategy oriented
• Rules with escapes are not implemented.
• The assembly parser is not implemented completely.
• Unidentified lines of input assembly files are

commented to solve the temporary problems.

C. Proposed Approach for the Peephole Optimizer

In the Proposed approach of enhanced peehole
optimizer more pattern matching techniques would be
involved to achive better searching of unoptimized code of
assembly provided as input file as well as more precised
rules would be defined to overcome the limitations of the
peephole optimizer explained above. More rule application
stretegies also involved to decide more suitable replacement
to be applied with the match found and if match not found
then the search for the next opptortunity for optimization

Fig. 4: Design for enhanced peephole optimizer

The figure 4 proposes the new design for enhanced
peephole optimizer with flexible peephole size that helps to
cover maximum cases of optimizations and maximum
opportunities of finding unoptimized code with less number
of traversal of assembly code for searching for match and it
may also improve the performance of the optimizer. The
proposed design also include Exhaustive pattern matching
and Abstract Pattern Matching techniques [12], [13] and
some other pattern matching techniques can also be
included letter on to improve the pattern matching process.
Along with that escape based and look ahead based rules
application strategies can also be adopted for alternatives
that help better replacement policies. This design also
suggests to generate logs of optimizations performed over
input along with improved code as output which helps the
enhanced peephole optimizer to learn some more
optimizations in future.

Chirag H. Bhatt et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 138-141

www.ijcsit.com 140

III. CONCLUSIONS

This paper approach for a collaborative fashion for the
Peephole Optimizer in terms of pattern matching techniques
along with the strategies for rule application to conduct
matching unoptimal code and to replace it with most
optimal instruction sequence. Previously described
strategies would have different qualities to lead the
assembly code to the optimization. But they might not lead
the code to the better option and they also busy with the
searching of best optimization which consumes time.
Rather than that the collaborative approach suggests to
utilize more than one strategy to lead the code to the next
optimal level.

REFERENCES
[1] Aho, A. V., Sethi, R., Ullman, J. D. (1986) Compilers: Principles,

Techniques, and Tools. Massachusetts: Addison-Wesley, pp. 554–
558.

[2] Bhadka. H. B. Bhatt C. H., “Peephole Optimization Technique for
analysis and review of Compiler Design and Construction,” IOSR
Journal of Computer Engineering (IOSR-JCE), pp. 80-86, 2013.

[3] Davidson, J. W., Whalley, D. B. (1989) Quick compilers using
peephole optimizations. Software - Practice & Experience
19(1):195-203.

[4] Spinellis, “Declarative Peephole Optimization Using String Pattern
Matching,” ACM SIGPLAN Notices 34(2), p. 47–51, 1999.

[5] Visser, J., L¨ammel, R. (2004) Matching Objects. Available at
http://www.di.uminho.pt/joost.visser/publications/MatchingObjects.
pdf (up 12/02/2005).

[6] Lamb, D. A. (1981) Construction of a Peephole Optimizer.
Software Practice & Experience 11(6):639–647.

[7] Grune, D., Bal, H. E., Jacobs, C. J. H., Langendoen, K. H. (2000)
Modern Compiler Design. NY: John Wiley & Sons, pp. 1, 371–375.

[8] “grep.html,” [Online]. Available: http://stat.ethz.ch/R-nual/R-
devel/library/base/html/grep.html.

[9] Ganapathi, M., Fischer, C. N. (1985) Affix Grammar Driven Code
Generation.ACM TOPLAS 7(4):560–599.

[10] Visser, E. et al. (2000-2005) Stratego: Strategies for Program
Transformation. http://www.stratego-language.org/ (up 01/05/2005).

[11] Elif Aktolga "Pattern Matching Strategies for Peephole
Optimisation" August 26, 2005 MRes Dissertation in Computer
Science and Artificial Intelligence, School of Science and
Technology, University of Sussex

[12] Chinawat Isradisaikul and Andrew C. Myers. Reconciling
exhaustive pattern matching with objects. Proceedings of the ACM
Conference on Programming Language Design and Implementation
(PLDI'13), pp. 343–353, June 2013.

[13] Jed Liu, Andrew C. Myers. JMatch: Iterable Abstract Pattern
Matching for Java, Proceedings of the 5th International Symposium
on Practical Aspects of Declarative Languages (PADL'03), pp. 110–
127, New Orleans, LA, Jan. 2003. LNCS 2562.

Chirag H. Bhatt et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 138-141

www.ijcsit.com 141

